home *** CD-ROM | disk | FTP | other *** search
/ Amiga Tools 4 / Amiga Tools 4.iso / grafix / tools / jpeg / jpeg-6a / jdmainct.c < prev    next >
C/C++ Source or Header  |  1996-01-06  |  20KB  |  513 lines

  1. /*
  2.  * jdmainct.c
  3.  *
  4.  * Copyright (C) 1994-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains the main buffer controller for decompression.
  9.  * The main buffer lies between the JPEG decompressor proper and the
  10.  * post-processor; it holds downsampled data in the JPEG colorspace.
  11.  *
  12.  * Note that this code is bypassed in raw-data mode, since the application
  13.  * supplies the equivalent of the main buffer in that case.
  14.  */
  15.  
  16. #define JPEG_INTERNALS
  17. #include "jinclude.h"
  18. #include "jpeglib.h"
  19.  
  20.  
  21. /*
  22.  * In the current system design, the main buffer need never be a full-image
  23.  * buffer; any full-height buffers will be found inside the coefficient or
  24.  * postprocessing controllers.  Nonetheless, the main controller is not
  25.  * trivial.  Its responsibility is to provide context rows for upsampling/
  26.  * rescaling, and doing this in an efficient fashion is a bit tricky.
  27.  *
  28.  * Postprocessor input data is counted in "row groups".  A row group
  29.  * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
  30.  * sample rows of each component.  (We require DCT_scaled_size values to be
  31.  * chosen such that these numbers are integers.  In practice DCT_scaled_size
  32.  * values will likely be powers of two, so we actually have the stronger
  33.  * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
  34.  * Upsampling will typically produce max_v_samp_factor pixel rows from each
  35.  * row group (times any additional scale factor that the upsampler is
  36.  * applying).
  37.  *
  38.  * The coefficient controller will deliver data to us one iMCU row at a time;
  39.  * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
  40.  * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
  41.  * to one row of MCUs when the image is fully interleaved.)  Note that the
  42.  * number of sample rows varies across components, but the number of row
  43.  * groups does not.  Some garbage sample rows may be included in the last iMCU
  44.  * row at the bottom of the image.
  45.  *
  46.  * Depending on the vertical scaling algorithm used, the upsampler may need
  47.  * access to the sample row(s) above and below its current input row group.
  48.  * The upsampler is required to set need_context_rows TRUE at global selection
  49.  * time if so.  When need_context_rows is FALSE, this controller can simply
  50.  * obtain one iMCU row at a time from the coefficient controller and dole it
  51.  * out as row groups to the postprocessor.
  52.  *
  53.  * When need_context_rows is TRUE, this controller guarantees that the buffer
  54.  * passed to postprocessing contains at least one row group's worth of samples
  55.  * above and below the row group(s) being processed.  Note that the context
  56.  * rows "above" the first passed row group appear at negative row offsets in
  57.  * the passed buffer.  At the top and bottom of the image, the required
  58.  * context rows are manufactured by duplicating the first or last real sample
  59.  * row; this avoids having special cases in the upsampling inner loops.
  60.  *
  61.  * The amount of context is fixed at one row group just because that's a
  62.  * convenient number for this controller to work with.  The existing
  63.  * upsamplers really only need one sample row of context.  An upsampler
  64.  * supporting arbitrary output rescaling might wish for more than one row
  65.  * group of context when shrinking the image; tough, we don't handle that.
  66.  * (This is justified by the assumption that downsizing will be handled mostly
  67.  * by adjusting the DCT_scaled_size values, so that the actual scale factor at
  68.  * the upsample step needn't be much less than one.)
  69.  *
  70.  * To provide the desired context, we have to retain the last two row groups
  71.  * of one iMCU row while reading in the next iMCU row.  (The last row group
  72.  * can't be processed until we have another row group for its below-context,
  73.  * and so we have to save the next-to-last group too for its above-context.)
  74.  * We could do this most simply by copying data around in our buffer, but
  75.  * that'd be very slow.  We can avoid copying any data by creating a rather
  76.  * strange pointer structure.  Here's how it works.  We allocate a workspace
  77.  * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
  78.  * of row groups per iMCU row).  We create two sets of redundant pointers to
  79.  * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
  80.  * pointer lists look like this:
  81.  *                   M+1                          M-1
  82.  * master pointer --> 0         master pointer --> 0
  83.  *                    1                            1
  84.  *                   ...                          ...
  85.  *                   M-3                          M-3
  86.  *                   M-2                           M
  87.  *                   M-1                          M+1
  88.  *                    M                           M-2
  89.  *                   M+1                          M-1
  90.  *                    0                            0
  91.  * We read alternate iMCU rows using each master pointer; thus the last two
  92.  * row groups of the previous iMCU row remain un-overwritten in the workspace.
  93.  * The pointer lists are set up so that the required context rows appear to
  94.  * be adjacent to the proper places when we pass the pointer lists to the
  95.  * upsampler.
  96.  *
  97.  * The above pictures describe the normal state of the pointer lists.
  98.  * At top and bottom of the image, we diddle the pointer lists to duplicate
  99.  * the first or last sample row as necessary (this is cheaper than copying
  100.  * sample rows around).
  101.  *
  102.  * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
  103.  * situation each iMCU row provides only one row group so the buffering logic
  104.  * must be different (eg, we must read two iMCU rows before we can emit the
  105.  * first row group).  For now, we simply do not support providing context
  106.  * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
  107.  * be worth providing --- if someone wants a 1/8th-size preview, they probably
  108.  * want it quick and dirty, so a context-free upsampler is sufficient.
  109.  */
  110.  
  111.  
  112. /* Private buffer controller object */
  113.  
  114. typedef struct {
  115.   struct jpeg_d_main_controller pub; /* public fields */
  116.  
  117.   /* Pointer to allocated workspace (M or M+2 row groups). */
  118.   JSAMPARRAY buffer[MAX_COMPONENTS];
  119.  
  120.   boolean buffer_full;        /* Have we gotten an iMCU row from decoder? */
  121.   JDIMENSION rowgroup_ctr;    /* counts row groups output to postprocessor */
  122.  
  123.   /* Remaining fields are only used in the context case. */
  124.  
  125.   /* These are the master pointers to the funny-order pointer lists. */
  126.   JSAMPIMAGE xbuffer[2];    /* pointers to weird pointer lists */
  127.  
  128.   int whichptr;            /* indicates which pointer set is now in use */
  129.   int context_state;        /* process_data state machine status */
  130.   JDIMENSION rowgroups_avail;    /* row groups available to postprocessor */
  131.   JDIMENSION iMCU_row_ctr;    /* counts iMCU rows to detect image top/bot */
  132. } my_main_controller;
  133.  
  134. typedef my_main_controller * my_main_ptr;
  135.  
  136. /* context_state values: */
  137. #define CTX_PREPARE_FOR_IMCU    0    /* need to prepare for MCU row */
  138. #define CTX_PROCESS_IMCU    1    /* feeding iMCU to postprocessor */
  139. #define CTX_POSTPONED_ROW    2    /* feeding postponed row group */
  140.  
  141.  
  142. /* Forward declarations */
  143. METHODDEF(void) process_data_simple_main
  144.     JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  145.          JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  146. METHODDEF(void) process_data_context_main
  147.     JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  148.          JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  149. #ifdef QUANT_2PASS_SUPPORTED
  150. METHODDEF(void) process_data_crank_post
  151.     JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  152.          JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  153. #endif
  154.  
  155.  
  156. LOCAL(void)
  157. alloc_funny_pointers (j_decompress_ptr cinfo)
  158. /* Allocate space for the funny pointer lists.
  159.  * This is done only once, not once per pass.
  160.  */
  161. {
  162.   my_main_ptr main = (my_main_ptr) cinfo->main;
  163.   int ci, rgroup;
  164.   int M = cinfo->min_DCT_scaled_size;
  165.   jpeg_component_info *compptr;
  166.   JSAMPARRAY xbuf;
  167.  
  168.   /* Get top-level space for component array pointers.
  169.    * We alloc both arrays with one call to save a few cycles.
  170.    */
  171.   main->xbuffer[0] = (JSAMPIMAGE)
  172.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  173.                 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
  174.   main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
  175.  
  176.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  177.        ci++, compptr++) {
  178.     rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  179.       cinfo->min_DCT_scaled_size; /* height of a row group of component */
  180.     /* Get space for pointer lists --- M+4 row groups in each list.
  181.      * We alloc both pointer lists with one call to save a few cycles.
  182.      */
  183.     xbuf = (JSAMPARRAY)
  184.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  185.                   2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
  186.     xbuf += rgroup;        /* want one row group at negative offsets */
  187.     main->xbuffer[0][ci] = xbuf;
  188.     xbuf += rgroup * (M + 4);
  189.     main->xbuffer[1][ci] = xbuf;
  190.   }
  191. }
  192.  
  193.  
  194. LOCAL(void)
  195. make_funny_pointers (j_decompress_ptr cinfo)
  196. /* Create the funny pointer lists discussed in the comments above.
  197.  * The actual workspace is already allocated (in main->buffer),
  198.  * and the space for the pointer lists is allocated too.
  199.  * This routine just fills in the curiously ordered lists.
  200.  * This will be repeated at the beginning of each pass.
  201.  */
  202. {
  203.   my_main_ptr main = (my_main_ptr) cinfo->main;
  204.   int ci, i, rgroup;
  205.   int M = cinfo->min_DCT_scaled_size;
  206.   jpeg_component_info *compptr;
  207.   JSAMPARRAY buf, xbuf0, xbuf1;
  208.  
  209.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  210.        ci++, compptr++) {
  211.     rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  212.       cinfo->min_DCT_scaled_size; /* height of a row group of component */
  213.     xbuf0 = main->xbuffer[0][ci];
  214.     xbuf1 = main->xbuffer[1][ci];
  215.     /* First copy the workspace pointers as-is */
  216.     buf = main->buffer[ci];
  217.     for (i = 0; i < rgroup * (M + 2); i++) {
  218.       xbuf0[i] = xbuf1[i] = buf[i];
  219.     }
  220.     /* In the second list, put the last four row groups in swapped order */
  221.     for (i = 0; i < rgroup * 2; i++) {
  222.       xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
  223.       xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
  224.     }
  225.     /* The wraparound pointers at top and bottom will be filled later
  226.      * (see set_wraparound_pointers, below).  Initially we want the "above"
  227.      * pointers to duplicate the first actual data line.  This only needs
  228.      * to happen in xbuffer[0].
  229.      */
  230.     for (i = 0; i < rgroup; i++) {
  231.       xbuf0[i - rgroup] = xbuf0[0];
  232.     }
  233.   }
  234. }
  235.  
  236.  
  237. LOCAL(void)
  238. set_wraparound_pointers (j_decompress_ptr cinfo)
  239. /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
  240.  * This changes the pointer list state from top-of-image to the normal state.
  241.  */
  242. {
  243.   my_main_ptr main = (my_main_ptr) cinfo->main;
  244.   int ci, i, rgroup;
  245.   int M = cinfo->min_DCT_scaled_size;
  246.   jpeg_component_info *compptr;
  247.   JSAMPARRAY xbuf0, xbuf1;
  248.  
  249.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  250.        ci++, compptr++) {
  251.     rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  252.       cinfo->min_DCT_scaled_size; /* height of a row group of component */
  253.     xbuf0 = main->xbuffer[0][ci];
  254.     xbuf1 = main->xbuffer[1][ci];
  255.     for (i = 0; i < rgroup; i++) {
  256.       xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
  257.       xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
  258.       xbuf0[rgroup*(M+2) + i] = xbuf0[i];
  259.       xbuf1[rgroup*(M+2) + i] = xbuf1[i];
  260.     }
  261.   }
  262. }
  263.  
  264.  
  265. LOCAL(void)
  266. set_bottom_pointers (j_decompress_ptr cinfo)
  267. /* Change the pointer lists to duplicate the last sample row at the bottom
  268.  * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
  269.  * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
  270.  */
  271. {
  272.   my_main_ptr main = (my_main_ptr) cinfo->main;
  273.   int ci, i, rgroup, iMCUheight, rows_left;
  274.   jpeg_component_info *compptr;
  275.   JSAMPARRAY xbuf;
  276.  
  277.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  278.        ci++, compptr++) {
  279.     /* Count sample rows in one iMCU row and in one row group */
  280.     iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
  281.     rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
  282.     /* Count nondummy sample rows remaining for this component */
  283.     rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
  284.     if (rows_left == 0) rows_left = iMCUheight;
  285.     /* Count nondummy row groups.  Should get same answer for each component,
  286.      * so we need only do it once.
  287.      */
  288.     if (ci == 0) {
  289.       main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
  290.     }
  291.     /* Duplicate the last real sample row rgroup*2 times; this pads out the
  292.      * last partial rowgroup and ensures at least one full rowgroup of context.
  293.      */
  294.     xbuf = main->xbuffer[main->whichptr][ci];
  295.     for (i = 0; i < rgroup * 2; i++) {
  296.       xbuf[rows_left + i] = xbuf[rows_left-1];
  297.     }
  298.   }
  299. }
  300.  
  301.  
  302. /*
  303.  * Initialize for a processing pass.
  304.  */
  305.  
  306. METHODDEF(void)
  307. start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
  308. {
  309.   my_main_ptr main = (my_main_ptr) cinfo->main;
  310.  
  311.   switch (pass_mode) {
  312.   case JBUF_PASS_THRU:
  313.     if (cinfo->upsample->need_context_rows) {
  314.       main->pub.process_data = process_data_context_main;
  315.       make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
  316.       main->whichptr = 0;    /* Read first iMCU row into xbuffer[0] */
  317.       main->context_state = CTX_PREPARE_FOR_IMCU;
  318.       main->iMCU_row_ctr = 0;
  319.     } else {
  320.       /* Simple case with no context needed */
  321.       main->pub.process_data = process_data_simple_main;
  322.     }
  323.     main->buffer_full = FALSE;    /* Mark buffer empty */
  324.     main->rowgroup_ctr = 0;
  325.     break;
  326. #ifdef QUANT_2PASS_SUPPORTED
  327.   case JBUF_CRANK_DEST:
  328.     /* For last pass of 2-pass quantization, just crank the postprocessor */
  329.     main->pub.process_data = process_data_crank_post;
  330.     break;
  331. #endif
  332.   default:
  333.     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  334.     break;
  335.   }
  336. }
  337.  
  338.  
  339. /*
  340.  * Process some data.
  341.  * This handles the simple case where no context is required.
  342.  */
  343.  
  344. METHODDEF(void)
  345. process_data_simple_main (j_decompress_ptr cinfo,
  346.               JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  347.               JDIMENSION out_rows_avail)
  348. {
  349.   my_main_ptr main = (my_main_ptr) cinfo->main;
  350.   JDIMENSION rowgroups_avail;
  351.  
  352.   /* Read input data if we haven't filled the main buffer yet */
  353.   if (! main->buffer_full) {
  354.     if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
  355.       return;            /* suspension forced, can do nothing more */
  356.     main->buffer_full = TRUE;    /* OK, we have an iMCU row to work with */
  357.   }
  358.  
  359.   /* There are always min_DCT_scaled_size row groups in an iMCU row. */
  360.   rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
  361.   /* Note: at the bottom of the image, we may pass extra garbage row groups
  362.    * to the postprocessor.  The postprocessor has to check for bottom
  363.    * of image anyway (at row resolution), so no point in us doing it too.
  364.    */
  365.  
  366.   /* Feed the postprocessor */
  367.   (*cinfo->post->post_process_data) (cinfo, main->buffer,
  368.                      &main->rowgroup_ctr, rowgroups_avail,
  369.                      output_buf, out_row_ctr, out_rows_avail);
  370.  
  371.   /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
  372.   if (main->rowgroup_ctr >= rowgroups_avail) {
  373.     main->buffer_full = FALSE;
  374.     main->rowgroup_ctr = 0;
  375.   }
  376. }
  377.  
  378.  
  379. /*
  380.  * Process some data.
  381.  * This handles the case where context rows must be provided.
  382.  */
  383.  
  384. METHODDEF(void)
  385. process_data_context_main (j_decompress_ptr cinfo,
  386.                JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  387.                JDIMENSION out_rows_avail)
  388. {
  389.   my_main_ptr main = (my_main_ptr) cinfo->main;
  390.  
  391.   /* Read input data if we haven't filled the main buffer yet */
  392.   if (! main->buffer_full) {
  393.     if (! (*cinfo->coef->decompress_data) (cinfo,
  394.                        main->xbuffer[main->whichptr]))
  395.       return;            /* suspension forced, can do nothing more */
  396.     main->buffer_full = TRUE;    /* OK, we have an iMCU row to work with */
  397.     main->iMCU_row_ctr++;    /* count rows received */
  398.   }
  399.  
  400.   /* Postprocessor typically will not swallow all the input data it is handed
  401.    * in one call (due to filling the output buffer first).  Must be prepared
  402.    * to exit and restart.  This switch lets us keep track of how far we got.
  403.    * Note that each case falls through to the next on successful completion.
  404.    */
  405.   switch (main->context_state) {
  406.   case CTX_POSTPONED_ROW:
  407.     /* Call postprocessor using previously set pointers for postponed row */
  408.     (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  409.             &main->rowgroup_ctr, main->rowgroups_avail,
  410.             output_buf, out_row_ctr, out_rows_avail);
  411.     if (main->rowgroup_ctr < main->rowgroups_avail)
  412.       return;            /* Need to suspend */
  413.     main->context_state = CTX_PREPARE_FOR_IMCU;
  414.     if (*out_row_ctr >= out_rows_avail)
  415.       return;            /* Postprocessor exactly filled output buf */
  416.     /*FALLTHROUGH*/
  417.   case CTX_PREPARE_FOR_IMCU:
  418.     /* Prepare to process first M-1 row groups of this iMCU row */
  419.     main->rowgroup_ctr = 0;
  420.     main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
  421.     /* Check for bottom of image: if so, tweak pointers to "duplicate"
  422.      * the last sample row, and adjust rowgroups_avail to ignore padding rows.
  423.      */
  424.     if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
  425.       set_bottom_pointers(cinfo);
  426.     main->context_state = CTX_PROCESS_IMCU;
  427.     /*FALLTHROUGH*/
  428.   case CTX_PROCESS_IMCU:
  429.     /* Call postprocessor using previously set pointers */
  430.     (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  431.             &main->rowgroup_ctr, main->rowgroups_avail,
  432.             output_buf, out_row_ctr, out_rows_avail);
  433.     if (main->rowgroup_ctr < main->rowgroups_avail)
  434.       return;            /* Need to suspend */
  435.     /* After the first iMCU, change wraparound pointers to normal state */
  436.     if (main->iMCU_row_ctr == 1)
  437.       set_wraparound_pointers(cinfo);
  438.     /* Prepare to load new iMCU row using other xbuffer list */
  439.     main->whichptr ^= 1;    /* 0=>1 or 1=>0 */
  440.     main->buffer_full = FALSE;
  441.     /* Still need to process last row group of this iMCU row, */
  442.     /* which is saved at index M+1 of the other xbuffer */
  443.     main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
  444.     main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
  445.     main->context_state = CTX_POSTPONED_ROW;
  446.   }
  447. }
  448.  
  449.  
  450. /*
  451.  * Process some data.
  452.  * Final pass of two-pass quantization: just call the postprocessor.
  453.  * Source data will be the postprocessor controller's internal buffer.
  454.  */
  455.  
  456. #ifdef QUANT_2PASS_SUPPORTED
  457.  
  458. METHODDEF(void)
  459. process_data_crank_post (j_decompress_ptr cinfo,
  460.              JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  461.              JDIMENSION out_rows_avail)
  462. {
  463.   (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
  464.                      (JDIMENSION *) NULL, (JDIMENSION) 0,
  465.                      output_buf, out_row_ctr, out_rows_avail);
  466. }
  467.  
  468. #endif /* QUANT_2PASS_SUPPORTED */
  469.  
  470.  
  471. /*
  472.  * Initialize main buffer controller.
  473.  */
  474.  
  475. GLOBAL(void)
  476. jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
  477. {
  478.   my_main_ptr main;
  479.   int ci, rgroup, ngroups;
  480.   jpeg_component_info *compptr;
  481.  
  482.   main = (my_main_ptr)
  483.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  484.                 SIZEOF(my_main_controller));
  485.   cinfo->main = (struct jpeg_d_main_controller *) main;
  486.   main->pub.start_pass = start_pass_main;
  487.  
  488.   if (need_full_buffer)        /* shouldn't happen */
  489.     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  490.  
  491.   /* Allocate the workspace.
  492.    * ngroups is the number of row groups we need.
  493.    */
  494.   if (cinfo->upsample->need_context_rows) {
  495.     if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
  496.       ERREXIT(cinfo, JERR_NOTIMPL);
  497.     alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
  498.     ngroups = cinfo->min_DCT_scaled_size + 2;
  499.   } else {
  500.     ngroups = cinfo->min_DCT_scaled_size;
  501.   }
  502.  
  503.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  504.        ci++, compptr++) {
  505.     rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  506.       cinfo->min_DCT_scaled_size; /* height of a row group of component */
  507.     main->buffer[ci] = (*cinfo->mem->alloc_sarray)
  508.             ((j_common_ptr) cinfo, JPOOL_IMAGE,
  509.              compptr->width_in_blocks * compptr->DCT_scaled_size,
  510.              (JDIMENSION) (rgroup * ngroups));
  511.   }
  512. }
  513.